
1

Combinational Logic Design

with Verilog

ECE 152A – Summer 2009

July 8, 2009 ECE 152A - Digital Design Principles 2

Reading Assignment

� Brown and Vranesic

� 2 Introduction to Logic Circuits

� 2.10 Introduction to Verilog

� 2.10.1 Structural Specification of Logic Circuits

� 2.10.2 Behavioral Specification of Logic Circuits

� 2.10.3 How Not to Write Verilog Code

2

July 8, 2009 ECE 152A - Digital Design Principles 3

Reading Assignment

� Brown and Vranesic (cont) 1st edition only!

� 4Optimized Implementation of Logic Functions

� 4.12 CAD Tools

� 4.12.1 Logic Synthesis and Optimization

� 4.12.2 Physical Design

� 4.12.3 Timing Simulation

� 4.12.4 Summary of Design Flow

� 4.12.5 Examples of Circuits Synthesized from Verilog Code

July 8, 2009 ECE 152A - Digital Design Principles 4

Programmable Logic

� Provides low cost and flexibility in a design

� Replace multiple discrete gates with single device

� Logical design can be changed by reprogramming

the device

� No change in board design

� Logical design can be changed even after the part

has been soldered onto the circuit board in

modern, In-system programmable device

� Inventory can focus on one part

� Multiple uses of same device

3

July 8, 2009 ECE 152A - Digital Design Principles 5

Programmable Logic

� Evolution of Programmable Logic

� Both in time and complexity

� ROM’s and RAM’s

� Not strictly programmable logic, but useful in

implementing combinational logic and state machines

� PAL’s

� PAL’s – Programmable Array Logic

� PLA’s – Programmable Logic Array

� GAL’s – Generic Logic Array

July 8, 2009 ECE 152A - Digital Design Principles 6

Programmable Logic

� PLD’s

� Programmable Logic Device

� PLDs are (in general) advanced PALs

� CPLD’s

� Complex Programmable Logic Device

� Multiple PLDs on a single chip

� FPGA’s

� Field Programmable Gate Array

4

July 8, 2009 ECE 152A - Digital Design Principles 7

Design Entry

� In previous examples, design entry is schematic

based

� TTL implementation using standard, discrete integrated

circuits

� PLD implementation using library of primitive elements

� Code based design entry uses a hardware

description language (HDL) for design entry

� Code is synthesized and implemented on a PLD

July 8, 2009 ECE 152A - Digital Design Principles 8

Verilog Design

� Structural Verilog

� Looks like the gate level implementation

� Specify gates and interconnection

� Text form of schematic

� Referred to as “netlist”

� Allows for “bottom – up” design

� Begin with primitives, instantiate in larger blocks

5

July 8, 2009 ECE 152A - Digital Design Principles 9

Verilog Design

� RTL (Register Transfer Level) Verilog

� Allows for “top – down” design

� No gate structure or interconnection specified

� Synthesizable code (by definition)

� Emphasis on synthesis, not simulation

� vs. high level behavioral code and test benches

� No timing specified in code

� No initialization specified in code

� Timing, stimulus, initialization, etc. generated in testbench

(later)

July 8, 2009 ECE 152A - Digital Design Principles 10

Half Adder - Structural Verilog Design

� Recall Half Adder

description from

schematic based

design example

� Operation

� Truth table

� Circuit

� Graphical symbol

6

July 8, 2009 ECE 152A - Digital Design Principles 11

Verilog Syntax

� Modules are the basic unit of Verilog models

� Functional Description

� Unambiguously describes module’s operation

� Functional, i.e., without timing information

� Input, Output and Bidirectional ports for interfaces

� May include instantiations of other modules

� Allows building of hierarchy

July 8, 2009 ECE 152A - Digital Design Principles 12

Verilog Syntax

� Module declaration

� module ADD_HALF (s,c,x,y);

� Parameter list is I/O Ports

� Port declaration

� Can be input, output or inout (bidirectional)

� output s,c;

� input x,y;

7

July 8, 2009 ECE 152A - Digital Design Principles 13

Verilog Syntax

� Declare nodes as wires or reg

� Wires assigned to declaratively

� Reg assigned to procedurally

� More on this later

� In a combinational circuit, all nodes can, but don’t

have to be, declared wires
� Depends on how code is written

� Node defaults to wire if not declared otherwise

� wire s,c,x,y;

July 8, 2009 ECE 152A - Digital Design Principles 14

Verilog Syntax

� Gates and interconnection

� xor G1(s,x,y);

� and G2(c,x,y);

� Verilog gate level primitive

� Gate name

� Internal (local) name

� Instance name

� Parameter list

� Output port, input port, input port…

8

July 8, 2009 ECE 152A - Digital Design Principles 15

Gate Instantiation

� Verilog Gates

� Note: notif

and bufif are

tri-state gates

July 8, 2009 ECE 152A - Digital Design Principles 16

Verilog Syntax

� Close the module definition with

� endmodule

� Comments begin with //

9

July 8, 2009 ECE 152A - Digital Design Principles 17

Half Adder - Structural Verilog Design

module ADD_HALF (s,c,x,y);

output s,c;

input x,y;

wire s,c,x,y;

// this line is optional since nodes default to wires

xor G1 (s,x,y); // instantiation of XOR gate

and G2 (c,x,y); // instantiation of AND gate

endmodule

July 8, 2009 ECE 152A - Digital Design Principles 18

Half Adder – PLD Implementation

� Functional Simulation

Input

Output

0+0 0+1 1+0 1+1

00 01 01 10

10

July 8, 2009 ECE 152A - Digital Design Principles 19

Full Adder – Structural Verilog Design

� Recall Full Adder

description from

schematic based

design example

� Truth table

� Karnaugh maps

� Circuit

July 8, 2009 ECE 152A - Digital Design Principles 20

Full Adder from 2 Half Adders

11

July 8, 2009 ECE 152A - Digital Design Principles 21

Full Adder – Structural Verilog Design

module ADD_FULL (s,cout,x,y,cin);

output s,cout;

input x,y,cin;

//internal nodes also declared as wires

wire cin,x,y,s,cout,s1,c1,c2;

ADD_HALF HA1(s1,c1,x,y);

ADD_HALF HA2(s,c2,cin,s1);

or (cout,c1,c2);

endmodule

July 8, 2009 ECE 152A - Digital Design Principles 22

Full Adder – PLD Implementation

� Functional Simulation

Input

Output

0+0+0

0+0+1

00 01

0+1+0

0+1+1

01 10

1+0+0

1+0+1

01 10

1+1+0

1+1+1

10 11

12

July 8, 2009 ECE 152A - Digital Design Principles 23

Verilog Operators

� The Verilog language includes a large number of

logical and arithmetic operators

� Bit length column indicates width of result

July 8, 2009 ECE 152A - Digital Design Principles 24

Behavioral Specification of Logic Circuits

� Continuous Assignment Operator

� assign sum = a ^ b;

� “Assign” to a wire (generated declaratively)

� Equivalent to

� xor (sum,a,b);

� Continuous and concurrent with other wire

assignment operations

� If a or b changes, sum changes accordingly

� All wire assignment operations occur concurrently

� Order not specified (or possible)

13

July 8, 2009 ECE 152A - Digital Design Principles 25

Full Adder from Logical Operations

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;

input x,y,cin;

//declaration for continuous assignment

wire cin,x,y,sum,cout;

//logical assignment

assign sum = x ^ y ^ cin;

assign cout = x & y | x & cin | y & cin;

endmodule

July 8, 2009 ECE 152A - Digital Design Principles 26

Full Adder from Arithmetic Operations

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;

input x,y,cin;

//declaration for continuous assignment

wire cin,x,y,sum,cout;

// concatenation operator and addition

assign {cout, sum} = x + y + cin;

endmodule

14

July 8, 2009 ECE 152A - Digital Design Principles 27

Procedural Verilog Statements

� Recall:

� Wires assigned to declaratively

� Continuous / concurrent assignment

� Reg “variables” assigned to procedurally

� Value is “registered” until next procedural assignment

� Continuous assignment (wires) occurs immediately on input

change

� Enables clocked (synchronous) timing

July 8, 2009 ECE 152A - Digital Design Principles 28

Procedural Verilog Statements

� The “always” block

� Syntax is “always at the occurrence (@) of any

event on the sensitivity list, execute the

statements inside the block (in order)”

always @ (x or y or cin)

{cout, sum} = x + y + cin;

15

July 8, 2009 ECE 152A - Digital Design Principles 29

RTL Design of Full Adder

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;

input x,y,cin;

//declaration for behavioral model

wire cin,x,y;

reg sum,cout;

// behavioral specification

always @ (x or y or cin)

{cout, sum} = x + y + cin;

endmodule

July 8, 2009 ECE 152A - Digital Design Principles 30

Two-bit, Ripple Carry Adder –

Structural Verilog
module TWO_BIT_ADD (S,X,Y,cin,cout);

input cin;

input [1:0]X,Y; // vectored input

output [1:0]S; // and output signals

output cout;

wire cinternal;

ADD_FULL AF0(S[0],cinternal,X[0],Y[0],cin);

ADD_FULL AF1(S[1],cout,X[1],Y[1],cinternal);

endmodule

16

July 8, 2009 ECE 152A - Digital Design Principles 31

Two-bit, Ripple Carry Adder –

PLD Implementation

� Functional Simulation

� Base-4 Bus Representation of X, Y and Sum

0+1+3 = 4 = 104 → 1+2+2 = 5 = 114 →

0+3+0 = 3 = 034 → 1+3+3 = 7 = 134 →

July 8, 2009 ECE 152A - Digital Design Principles 32

Verilog Test Bench

� Device Under Test (DUT)

� Circuit being designed/developed

� Full adder for this example

� Testbench

� Provides stimulus to DUT

� Like test equipment on a bench

� Instantiate DUT in testbench

� Generate all signals in testbench

� No I/O (parameter list) in testbench

17

July 8, 2009 ECE 152A - Digital Design Principles 33

Full Adder Testbench Example

module ADDFULL_TB;

reg a,b,ci;

wire sum,co;

initial begin

a = 0;

b = 0;

ci = 0;

end

always begin

#5 a = ~a;

end

always begin

#10 b = ~b;

end

always begin

#20 ci = ~ci;

end

ADD_FULL AF1(sum,co,a,b,ci);

endmodule

